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Abstract: The curvature invariants of three Lorentzian wormholes are calculated and plotted in this
paper. The plots may be inspected for discontinuities to analyze the traversability of a wormhole.
This approach was formulated by Henry, Overduin, and Wilcomb for black holes (Henry et al., 2016).
Curvature invariants are independent of coordinate basis, so the process is free of coordinate mapping
distortions and the same regardless of your chosen coordinates (Christoffel, E.B., 1869; Stephani, et al.,
2003). The four independent Carminati and McLenaghan (CM) invariants are calculated and the
nonzero curvature invariant functions are plotted (Carminati et al., 1991; Santosuosso et al., 1998).
Three traversable wormhole line elements analyzed include the (i) spherically symmetric Morris and
Thorne, (ii) thin-shell Schwarzschild wormholes, and (iii) the exponential metric (Visser, M., 1995;
Boonserm et al., 2018).
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1. Introduction

Lorentzian traversable wormholes were first described by Kip Thorne and collaborators who
used Einstein’s general relativistic field equations to explore the possibility of faster-than-light (FTL)
interstellar spaceflight without violating special relativity [1,2]. Earlier studies demonstrated the
possibility of traversable wormholes in general relativity [3,4]. A Lorentzian traversable wormhole is a
topological opening in spacetime which manifests traversable intra-universe and/or inter-universe
connections, as well as possible different chronological connections between distant spacetime points.
The condition for a Lorentzian wormhole to be traversable is that it is free of both event horizons
and singularities [5]. Such a wormhole is fully traversable in both directions, geodesically complete,
and possesses no crushing gravitational tidal forces found anywhere inside. Consequently, Lorentzian
traversable wormholes are unlike the nontraversable Schwarzschild wormhole, or Einstein–Rosen
bridge, associated with eternal black holes in the maximally extended version of the Schwarzschild
metric. Exotic matter, which violates the point-wise and averaged energy conditions, is required to
open and stabilize a Lorentzian traversable wormhole. A comprehensive technical overview of this
subject is found in [5].
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Previous studies of Lorentzian traversable wormholes rely on either calculating the elements of
the Riemann curvature tensor, Ri

jkl , to “observe” the effects of the wormhole’s spacetime curvature

on photons and matter moving through it or by embedding diagrams. However, the Ri
jkl cannot be

calculated in an invariant manner because it is a function of the chosen coordinates [6]. Analysis of
Ri

jkl can be misleading because a different choice of coordinate basis will result in different tensor
components. These coordinate mapping distortions arise purely as an artifact of the coordinate choice.
Embedding diagrams offer a narrow view of the spacetime manifold. In [1], the embedding diagrams
depicts the wormhole geometry along just an equatorial (θ = π

2 ) slice through space at a specific
moment in time. The embedding diagram only offers a limited view of the physics involved in the
wormhole. Curvature invariants allow a manifestly coordinate invariant characterization of certain
geometrical properties of spacetime [7]. The best way to illustrate wormhole spacetimes without
such issues is to plot their independent curvature invariants to provide proper visualization of any
hidden surprises.

Christoffel proved that scalars constructed from the metric and its derivatives must be functions
of the metric itself, the Riemann tensor and its covariant derivatives [8]. Curvature invariants are scalar
products of Riemann, Ricci, or Weyl tensors, or their covariant derivatives. Curvature invariants are of
particular interest in general relativity for identifying intrinsic singularities in spacetimes, classifying
the Petrov type of the Weyl tensor and the Segre type of the trace-free Ricci tensor, and studying
the equivalence problem [7,9–15]. The study of curvature invariants is a subject of recent black hole
research with a priority on locating their horizons [16–21]. Specific curvature invariants of certain
wormholes have been calculated to locate any singularities and horizons, but a complete set has not
been presented and calculated [22–24]. The set of Carminati and McLenaghan (CM) invariants are of
lowest degree and contains a minimal independent set for any Petrov or Segre types [25]. For class
B warped product spacetimes1, four of the CM invariants, R, r1, r2, and w2, are needed to satisfy the
syzygies2 [27]. In this paper, the CM curvature invariants of popular wormholes will be plotted and
the geometrical properties analyzed.

In [16], Henry et al. computed and plotted a number of independent curvature invariants for
the hidden interiors of Kerr–Newman black holes. They produced visually stunning 3D plots which
revealed the surprisingly complex nature of spacetime curvature in Kerr–Newman black hole interiors.
Their work motivated the present authors to undertake a similar study for the case of Lorentzian
traversable wormholes. Reported here are the computations and 3D plots for three selected Lorentzian
traversable wormholes that are described in [5,22]: (i) the Morris and Thorne (MT) wormhole, (ii) the
thin-shell Schwarzschild wormhole, and (iii) the exponential metric. The thin-shell flat-face (TS)
wormhole was also analyzed, but all of its invariants were trivial as they were identically zero.

2. Method to Compute the Invariants

The CM curvature invariants can be calculated from any given line element. From the line element,
identify the metric gij with the indices {i, j, k, l} ranging from {0, n− 1}, where n is the number of
spacetime dimensions. In this paper, a basis or a tetrad will be chosen for each metric. It is emphasized
that the scalar invariants are independent of the choice of coordinates in a tetrad. A different choice of
coordinates for each spacetimes’ tetrad will result in the same invariants plotted in this paper. From the
metric, the Ricci scalar R, the trace-free Ricci tensor Sij and the Weyl tensor Cijkl can be calculated [10].

1 Warped products of class B are line elements of the form ds2 = ds2
Σ1
(u, v) + C(xγ)2ds2

Σ2
(θ, φ) subject to the restriction

C(xγ)2 = r(u, v)2e(θ, φ)2. Class B1 spacetimes include all spherical, planar, and hyperbolic spacetimes and contain all
spacetime line elements considered in this paper [26].

2 The syzygies reveal either all independent irreducible algebraic relations among the set of invariants or that no set exists [9].
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The literature defines fourteen curvature invariants, but the total rises to seventeen when certain
nondegenerate cases are taken into account [7,25]. The four CM invariants as required by the syzygies
are [27]:

R = gijRij, (1)

r1 =
1
4

Sj
i S

i
j, (2)

r2 = −1
8

Sj
i S

i
kSk

j , (3)

w2 = −1
8

C̄ijklC̄ijmnC̄kl
mn. (4)

The full solutions to the wormhole metrics studied herein were found using Wolfram Mathematica 10.4 R©.

3. Morris and Thorne Wormhole

The MT wormhole is defined by a spacetime, which is spherically symmetric and Lorentzian.
The spacetime describes the required traversable wormhole geometry. In the standard Schwarzschild
coordinates [1], the line element is:

ds2 = −e2φ±(r)dt2 +
dr2(

1− b±(r)
r

) + r2(dθ2 + sin2θdϕ2). (5)

The tetrad for the MT line element uses the spherical coordinates (r: with circumference =

2πr; 0 ≤ θ ≤ π; 0 ≤ ϕ ≤ 2π), and (−∞ < t < ∞) is the proper time of a static observer. φ±(r) is the
freely specifiable redshift function that defines the proper time lapse through the wormhole throat.
b±(r) is the freely specifiable shape function that defines the wormhole throat’s spatial (hypersurface)
geometry. The ± indicates the side of the wormhole. The throat described by Equation (5) is spherical.
A fixed constant, r0, is chosen to define the radius of the wormhole throat such that b±(r0) = r0, which
is an isolated minimum. Two coordinate patches of the manifold are then joined at r0. Each patch
represents either a different part of the same universe or another universe, and the patches range
from r0 ≤ r < ∞. The condition that the wormhole is horizon free requires that gtt = −e2φ±(r) 6= 0.
This implies that |φ±(r)|must be finite everywhere [5,28]. The use of Schwarzschild coordinates in
Equation (5) leads to more efficient computations of the Riemann and Ricci curvature tensors, the Ricci
scalar, and all four invariants.

The four CM invariants for the Morris-Thorne wormhole are

R =
1
r2

(
b′
(
rΦ′ + 2

)
+ 2r (b− r)Φ′′ − 2r (r− b)Φ

′2 + (3b− 4r)Φ′
)

, (6)

r1 =
1

16r6

(
r2(b′2 (r2Φ

′2 + 2
)
− 4rb′Φ′

(
r2Φ′′ + r2Φ

′2 − 2
)
+ 4r2(r2Φ

′′2 + r2Φ
′4 + 2Φ

′2
(

r2Φ′′ + 1
)))

− 2rb
(
b′
(
−2r3Φ

′3 + Φ′
(

6r− 2r3Φ′′
)
+ r2Φ

′2 + 2
)
+ 2r

(
2r3Φ

′4 + 2Φ
′2
(

2r3Φ′′ + r
)

+ 2rΦ′′
(

r2Φ′′ − 1
)
− r2Φ

′3 + Φ′
(

2− r2Φ′′
)))

+ b2(4r4Φ
′′2 + 4r4Φ

′4 − 4r3Φ
′3 − 8r2Φ′′ − 4rΦ′

(
r2Φ′′ − 3

)
+ Φ

′2
(

8r4Φ′′ + r2
)
+ 6
))

, (7)

r2 = − 3
64r9

(
b
(
2rΦ′ + 1

)
− r

(
b + 2rΦ′

))2(r2
(

b′Φ′ − 2r
(

Φ′′ + Φ
′2
))

+ b
(

2r2Φ′′ + 2r2Φ
′2 − rΦ′ − 2

))
, (8)

w2 =
1

144r9

(
r
(

b′
(
1− rΦ′

)
+ 2r

(
rΦ′′ + rΦ

′2 −Φ′
))
− b

(
2r2Φ′′ + 2r2Φ

′2 − 3rΦ′ + 3
))3

. (9)

All the invariants are nonzero and depend only on the radial coordinate, r, implying they are spherically
symmetric. The invariants are plotted in Figure 1 after selecting a redshift function of φ(r) = 0 and the
shape function of

b(r) = 2GM
(
1− er0−r)+ r0er0−r. (10)
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These functions satisfy the constraints on the asymptotic behavior and continuity at the wormhole’s
throat [5]. At a distant greater than 0.5 r0, all the figures are asymptotically flat. For r → 0, the figures
diverge to infinity. The divergence at r = 0 is not pathological as the radial coordinate r has a minimum
r0 > 0 at the wormhole’s throat. Thus, a traveler passing through the wormhole would not experience
any divergence. Any tidal forces on the traveler would be minimal. Consequently, the MT wormhole
would be traversable as indicated by the included invariant plots.

(a) Plot of MT R (b) Plot of MT r1

(c) Plot of MT r2 (d) Plot of MT w2

Figure 1. Plots of the nonzero invariants for the Morris and Thorne (MT) wormhole. The plots are
in radial coordinates with r ∈ {0, 4}. Each radial mesh line represents a radial distance of r = 0.26̄.
G = M = 1 were normalized for simplicity and r0 = 2 was chosen as the throat. Notice the divergence
at the center of each plot is completely inside the r = 2 = r0 radial line. This does not affect the
traversability of the wormhole.

4. Thin-Shell Schwarzschild Wormhole

A second example wormhole is the thin-shell Schwarzschild wormhole. The Schwarzschild
geometry in natural units is given by the line element:

ds2 = −
(

1− 2M
r

)
dt2 +

dr2(
1− 2M

r

) + r2
(

dθ2 + sin2θdϕ2
)

, (11)

where M is the mass of the wormhole. The tetrad of the line element is the spherical coordinates.
The thin shell formalism developed in [5] is used to construct the two sides of the wormhole. Each
side is described by Equation (11). The thin-shell formalism is applied with a unit normal ni =



Universe 2020, 6, 11 5 of 9

(
0,
√

1− 2M
r , 0, 0

)
. Regions described by Ω1,2 ≡

{
r1,2 ≤ a | a > 3M

2

}
are removed from the two

spacetimes leaving two separate and incomplete regions with boundaries given by the time-like
hypersurfaces ∂Ω1,2 ≡

{
r1,2 = a | a > 3M

2

}
. The boundaries ∂Ω1 = ∂Ω2 at the wormhole throat of

r = a are identified and connected. The boundary at a = 3M
2 is chosen to satisfy the Einstein equations

and equation of state in [5]; however, an event horizon is expected. The resulting spacetime manifold
is geodesically complete and contains two asymptotically flat regions connected by the wormhole.

Of the four CM invariants computed for the Schwarzschild wormhole, three invariants R, r1,
and r2 equal zero. The remaining invariant is

w2 = −12M3

r9 +
6M2

a2r9

√
1− 2M

a

(
a (r− 2M) + 2M

(
2M + 2r3 − r

))
δ (r− a)

+
12M
a5r9 (a− 2M)

(
4M2 (a− 2M)2 + r2 (a− 2M)2 − 4Mr (a− 2M)2 − 2M2r6

)
δ (r− a)2

+
8

a6r9

(
1− 2M

a

)3/2 (
(a− 2M)3 (r− 2M)3 + M3r9

)
δ (r− a)3 . (12)

The w2 invariant is broken into two main portions. The leading term of −12M3

r9 is the Schwarzschild
black hole’s w2 invariant. The remaining portions of the function are all proportional to different
powers of δ (r− a). Consequently, they contribute to the throat of the wormhole. Evaluating w2 at the
throat gives

w2|r=a =
2

a14

(
−6a5M3 + 4a8

(
(a− 2M)6

a9 + M3

)(
1− 2M

a

) 3
2

+ 3a3M2
(

4a3M + a2 − 4aM + 4M2
)√

1− 2M
a

− 6M (a− 2M)
(

2a6M2 − a4 + 8a3M− 24a2M2 + 32aM3 − 16M4
))

. (13)

Since w2 ∝ 1
a14 , the throat will experience greater curvature the smaller it is and vice versa.

The only nonzero invariant, w2, is plotted in Figure 2. The mass and radius of the throat are
normalized to M = 1 and a = 3

2 in the plot. Its plot has one divergence and one discontinuity.
The divergence occurs at r = 0, which is outside the manifold of Ω1,2. By the same argument for the
apparent MT divergence, the first Schwarzschild divergence would not impede the traversability of the
wormhole. The discontinuity occurs at r = a = 3M

2 and is located at the throat where the horizons are
connected by the Schwarzschild wormholes. In these invariants, it is represented by a discontinuous
jump to the value in Equation (13). Since the invariants at the horizon are inversely proportional to
a−14, the tidal forces on a traveler is benign at the horizon, and the thin-shell Schwarzschild wormhole
would be traversable.



Universe 2020, 6, 11 6 of 9

Figure 2. Plot of Schwarzschild w2. The plot is in radial coordinates with r ∈ {0, 4}. Each mesh line
represents a radial distance of 0.5. The δ-function can be seen as a thin discontinuity at r = 32 and its
value is recorded in Equation (13).

5. The Exponential Metric

The exponential metric was demonstrated recently in [22] to have a traversable wormhole throat.
In natural units, its line element is

ds2 = −e
−2M

r dt2 + e
+2M

r {dr2 + r2
(

dθ2 + sin2θdϕ2
)
}, (14)

where M is the mass of the wormhole. The tetrad utilizes the spherical coordinates. It has a traversable
wormhole throat at r = M. The area of the wormhole is a concave function with a minima at the
throat where it satisfies the “flare out” condition. It does not have a horizon since gtt 6= 0 for all r ≥ 0.
The region r < M on the other side of the wormhole is an infinite volume “other universe” that exhibits
an “underhill effect” where time runs slower since e

−2M
r > 0 in this region.

Computing the four curvature invariants for the exponential metric with Wolfram Mathematica
10.4 R© gives

R = −2M2

r4 e−
2M

r , (15)

r1 =
3M4

4r8 e−
4M

r , (16)

r2 =
3M6

8r12 e−
6M

r , (17)

w2 = −32M3(2M− 3r)3

9r12 e−
6M

r . (18)

They are all nonzero and depend only the radial coordinate r implying spherical symmetry. In addition,
they are finite at the throat r = M and go to zero as r −→ ∞ in accordance with [22]. w2 and R have a
minima near the throat, while r1 and r2 have a maxima. The plots are finite everywhere and completely
connected confirming the lack of a horizon. The encountered tidal forces would be minimal. It can be
concluded that the exponential metric represents a traversable wormhole.

6. Conclusions

This paper demonstrates how to compute and plot the curvature invariants of various wormhole
line elements. The curvature invariants reveal the entire wormhole spacetime manifold and whether the
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wormhole is traversable or not. As examples, plotting the CM curvature invariants of the (i) spherically
symmetric MT, (ii) thin-shell Schwarzschild, and (iii) exponential metric wormholes showed they are
traversable in agreement with [1,2,5]. The scalar polynomial invariants of the MT wormhole were found
to be nonzero and are plotted in Figure 1a–d. A divergence is found in all four, but it does not affect the
wormhole’s traversability since the divergence is outside the physical range of the radial coordinate,
r ∈ (r0, ∞). For the thin-shell Schwarzschild wormhole, w2 is found to be the single nonzero invariant.
As plotted in Figure 2, it has a divergence at the center and a ring discontinuity. The divergence is
outside the physical radial coordinate and can be safely ignored. The ring discontinuity represents
a jump due to the δ-function from the thin-shell formalism. It is shown to be inversely proportional
to a−14, not affecting traversability through the wormhole. The scalar polynomial invariants of the
exponential metric were found to be nonzero and were plotted in Figure 3a–d. The plots are continuous
across the entire manifold and traversable.

(a) Plot of the exponential metric R (b) Plot of exponential metric r1

(c) Plot of exponential metric r2 (d) Plot of the exponential metric w2

Figure 3. Plots of the nonzero invariants for the exponential metric. The plots are in radial coordinates
with r ∈ {0, 1.8M}. Each mesh line represents a radial distance of 0.1M. The throat begins at r = M.

Potentially, the ring discontinuity in the thin-shell Schwarzschild wormhole could lead to a
redshift of light rays passing through the wormhole. The redshift could be used to distinguish
wormholes from black holes. While significant research remains to answer traversable wormhole
issues, especially with regards to the exotic mass requirements and understanding averaged null
energy condition violations, the present paper hopes to establish several methods for understanding
the traversal through wormholes.
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Computing and plotting the invariant functions has significant advantages for the inspection
of wormholes. As mentioned previously, the advantage of plotting the invariants is that they are
free from coordinate mapping distortions and other artifacts of the chosen coordinates. The resulting
invariants properly illustrate the entire underlying spacetime independent of the coordinate system
chosen. Plotting the invariants exposes the presence of any artifacts, divergences, or discontinuities
anywhere on the manifold. Once the artifacts are revealed by the invariants, they can be related
mathematically to the textbook tensors. Any artifact’s effect can then be analyzed based on where the
curvature invariant locates it, what type of artifact the curvature invariant reveals it to be, and how the
artifact may affect the object’s motion based on the plots of the curvature invariant at that location.
A second advantage is the relative ease with which the invariants can be plotted. Software packages
exist or can be developed to calculate the textbook tensors. Then, the CM invariants can be derived
from the textbook using minimal edits to the software packages. The CM invariants were chosen
to be computed and plotted in this paper because they had general independence, were of lowest
possible degree, and a minimal independent set for any Petrov Type and for any specific choice of
the Ricci tensor [25]. It is of research interest that other choices for the set of invariants exist, such as
the Cartan invariants and the Witten and Petrov invariants [7,29]. These can be also computed and
plotted without difficulty, but they will be related to the CM invariants by polynomial functions [7].
Since the invariants are either scalars or pseudoscalars, they can be straightforwardly plotted and
visually interpreted.

The thin-shell Schwarzschild wormhole is the most common example of a large class of wormholes.
The class includes wormholes with different radii of curvature and/or masses on either side of the
throats, wormholes with same or different charge, Q, on either side of the wormhole, and time-dependent
wormholes. For charged wormholes, a second ring artifact at r = Q is likely to exist since the metric
has a singularity at that point.

A prospective future application of this work is an investigation of wormholes with throats that
change dynamically over time. This implies that the ring discontinuity in the invariant functions will
change as a function of time. Hence, dynamic wormholes are technically more intricate to study as
compared to static wormholes. Consequently, it can be expected that the computation of a dynamic
wormhole’s invariants and their plots increase in difficulty and computational runtime. In a broader
perspective, the calculation and plotting of curvature invariants can be made to encompass other types
of FTL spaceflight such as the Alcubierre warp drive [30].
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